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THE APPLICATION OF FUZZY-SET THEORY
TO THE BURNTHROUGH RANGE EQUATION

INTRODUCTION

Electronic warfare (EW) analysis is fraught with uncertainty, because the tactics and systems of a
potential enemy are never completely known. A continuing effort is made to reduce such uncertainty
by intelligence collection, but there is always a residue. Furthermore the uncertainty is not statistical.
If an EW problem is treated by probability, then personal or subjective probability, that is, the degree of
belief [1], must be used. Some authorities hold this to be an improper use of mathematical probability
[2]. An alternative approach is to use the theory of fuzzy sets [31, which is said to be particularly suit-
able for nonstatistical uncertainty, although agreement on this point is incomplete [4-81. The purpose
of this report is to demonstrate the application of fuzzy-set theory to an elementary EW problem and
present methods that may be generally used with the extension principle of fuzzy-set theory.

THE BURNTHROUGH RANGE EQUATION

The burnthrough range equation for self-screening against a search radar may be written in the
form [91

47TBREj(SNR)d | | ' (1)

where

a is the radar cross section of the target (square meters),
Bj is the bandwidth of the jammer,
BR is the bandwidth of the radar receiver,
ER is the effective radiated power of the radar, (ERP)R,
El is the effective radiated power of the jammer, (ERP)j,
q. is the radar-antenna beamwidth,
os is the radar-antenna scan rate,
(SNR)d is the minimum integrated signal-to-noise ratio necessary for detection, and

is the radar pulse-rate frequency.

Generally, the values of some of the arguments in Eq. (1) are not precisely known. Uncertainty
in the values of variables on the right-hand side of Eq. (1) is translated into a corresponding uncer-
tainty in the value of R. We apply fuzzy-set theory and treat the uncertain variables as "fuzzy variables"
that may be represented as a fuzzy set, each with a membership function. (The membership function
for a fuzzy set expresses on a scale of 0 to 1 the degree of membership of each element of some
universe of interest in the set.) Consider the case where two of the radar parameters, say ER and BR,
are uncertain. Later we shall discuss the general case where any number of variables are uncertain.
We rewrite Eq. (1) as

R2 = K2 ER (2)
BR

Manuscript submitted May 17, 1982.
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where K is a known constant and R, ER, and BR are the fuzzy variables. Membership functions for ER
and BR are assumed given and are denoted respectively by 1A E(e) and fB (b). Then by Zadeh's exten-
sion principle [lOal. the membership function for R is

PR (r) = sup min [AE(e), ,uB(b)] (3)
e,b

subject to the condition

r = KfIeTh. (4)

A simple example of this case with piecewise linear functions for ILE and AB is given in Appendix A
along with an analytical solution.

MATHEMATICAL ASPECTS

We first present an analytical approach to the solution of "fuzzy equations" using the burnthrough
range equation as an example.

Two Fuzzy Independent Variables

Normalizing r in Eqs. (3) and (4), we write

R (r) = sup min i-E(e), AB(b)l (5)
e,b

subject to the condition

r 2b e. (6)

Substituting for e in Eq. (5) we obtain

PR(r) = sup min WE(r b), PuB(b)]. (7)
b

We let [AB] be the domain of AR (r). For each r in [A,B], both vr(b) A uE(r2 b) and pmB(b)
have the same domain, say [CD]. Furthermore, we assume that both functions vr(b) and AB(b) are
analytic on [CD]. It follows from the identity theorem [111 that' for each r the function
Pr(b) - pB(b) has at most finitely many zeros in the interval [CD]. In other words, the functions
Pr(b) and pUB(b) intersect at most finitely many times. We let these intersections take place at the
values bj, j = 1, 2, ... , n; bj E [CD]. We now concentrate on a typical such interval, say [bj-., bl].
Without any loss of generality, we assume that pB(b) lies below vr(b) for b E (b-,,, bj). Thus, typi-
cally, we have a situation like the one in Fig. 1.

v, (b)

Fig. I - Typical interval between intersections
IPONzB~b) | of v,(b) and 1 B(b)
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The points bji, i= 1, 2,..., t in (bj-., bj) at which dyuB/db = 0 and simultaneously
d2,"B/db 2 < 0 are the points at which PAB(b) attains local maxima in (bj-,, bj). We need only examine
the points bj-1, bil, bi2, ... , bj,, bj. The largest of the values A ,B(b J)(bi with i = 1, 2, ... , t,
and 1B (b) is equal to

sup min[v,(b), MB(b)].
b

bE[bj_lbjl

We repeat this analysis for each of the intervals (bj 1), j = 1, 2, ... , n, using C for bo, and for
the interval (bO, D), exchanging /1 B and Pr when vr(b) lies below 1uB(b). If we denote the largest
such value (or a largest value) in [bj_-, b] by Mj and that in [ba, DI by Md, then for the value of r
used

PR (r) = max (Md, max Mj). (8)

We then repeat the entire process for enough values of r to establish a curve for AMR.

Thus far we have provided an analytical procedure to obtain the membership function for the
burnthrough range as a fuzzy variable, provided that analytic membership functions for the effective
radiated power and the bandwidth of the radar are given. The same procedure may be used for any
function of two fuzzy variables when one of them can be expressed in terms of the other and the
dependent variable, as in Eq. (6), and the given membership functions are analytic. The last condition
is not true for the example of Appendix A, but local maxima are not involved there.

More Than Two Fuzzy Independent Variables

The only theorem that seems to deal with the more difficult case of more than two fuzzy variables
is due to Baas and Kwakernaak [12,10b] and may be stated as follows:

Theorem: Let u;, i = 1, 2, ... , n, be n piecewise continuously differentiable membership func-
tions with finite supports. Let g be a continuously differentiable mapping of JR" into JR (the real line).
At points where the respective derivatives exist, let p'1(x,) = d,.,(x,)Idx, and g,(x) =

ag (xI, x2 , ... , x")/ OxN. Suppose that the point x = (x1, x2, . E. .,x) e R" satisfies the following:

* IA'i(k1) and g,(k), i = 1, 2, ... , n, exist and are nonzero.

* AUI (XI = Y 2 (X2) = M 1n (Xn) 

* p4'i(k1 )/gg(k) has the same sign for each i E {1, 2, ... , n).

Then x is a strict relative maximum point of the mathematical programming problem

maximize min m i(xi)

subject to the condition

g (XI, x2, ... O) =9 UCI, x2, *--, =n U0x)

Suppose that values for ER, BR, and f, in Eq. (1) are uncertain. Then we define F A (f])0o8 and
write

R= k A,/ BR (9)
VBRz
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where k is a constant and R, ER, BR, and F are the fuzzy variables. A new membership function
PF(f) for F is derived from a given membership function for f, as a fuzzy variable. Then by the
extension principle

PR(r) = sup min WE(e), /B(b), PAF(f)] (10)
ebj

subject to the condition

r = kVef. (11)

Normalizing r in Eq. (9), we write

JUR (r) = sup min LIE(e), AB(b), PF(f)] (12)
e,b,j

subject to the condition

r2 b = ef. (13)

To apply the theorem of Baas and Kwakernaak, we must assume the following:

* Each of the membership functions pE(e), AB(b) and pF(f) is piecewise
continuously differentiable with finite support;

* There exist e, b, and f such that A'E(e), IA'B(b), and A'F(f) exist and are nonzero;

* AE(e) = AB(b)= PF(f);

^ ^ ^~~~~~~~~2

* --M E(e), £P' F(j), and- -&p'8 (b) have the same sign.
/ e ef

Under these four conditions it follows from the theorem of Baas and Kwakernaak that
PR (r) is attained at e, b, and I for any given r. This result assures us that in principle under these
four conditions we can find the desired value of PR (r). but it does not provide a procedure. Further-
more, the last two conditions are rather strong and often may not be satisfied. The theorem gives only
sufficient conditions for a solution.

We now present a method which expands upon the previous one. This method not only assures
the existence of a solution under reasonable hypotheses but also provides an analytical procedure for
finding PR (r).

We let T =- so that Eq. (9) becomes
BR

R= kFT. (14)

By the procedure of the previous section we can determine the membership function p T(t) for T; then
Eq. (14) can be viewed as an equation with only two independent fuzzy variables, F and T. -Applying
the procedure once more, we can determine the desired membership function A R (r) for R.

It is important to demonstrate that we could just as well have chosen to make the substitution
T = ER F and followed the same procedure. It is not obvious that the substitution chosen does not
affect the final result, that is, the derived membership function PR (r). That UR (r) is independent of
the choice follows from a theorem dealing with the general n-dimensional case, which we state and
prove in Appendix B.

4
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Thus we have provided an analytical method for obtaining the membership function for the
burnthrough range, provided that analytic membership functions for the effective radiated power, the
bandwidth, and the pulse rate frequency of the radar are given. More generally, the same procedure
can be used recursively when any number of variables in Eq. (1) are fuzzy. More generally still, the
method can be used for any fuzzy equation where appropriate substitutions can be made and the given
membership functions are analytic.

If a single "best" value of a fuzzy variable is desired, it may be taken as the mean and called the
(nonstatistical) expected value. Thus for burnthrough range R, the expected value is

E(R) =fo r R(r) dr/f 0 MR(r) dr. (15)

This definition is not restricted to analytic membership functions.

DIGITAL COMPUTER SOLUTION

We now discuss an approach which is suitable for automatic computation. Equation (4) can be
written in the parametric form

e = s,

b K2 s (16)
r2

where s is a parameter which generates all points (e, b) satisfying Eq. (4) with fixed K and r. Substitut-
ing for e and b in Eq. (5) gives

K 2

PR (r) = sup min LupE(S), 1-B ( S)](s r2 S)-(17)

This is a simple problem of maximization of a function of a single variable, for which standard numeri-
cal techniques are available. The functions PE and AB need not be continuous, much less analytic.

The method can be applied generally to any relation of the form

z =f(x, y) (18)

for which a suitable parametric form

x= PX(z, s),

y= Py(Z' S) ,.(19)

can be obtained. Functions Px and Py need not be analytic either, only calculable by an algorithm. The
membership function for the dependent fuzzy variable is then given (in terms of membership functions
for the independent fuzzy variables) by

PZ(Z) = sup min Lux[Px(z, s)], A.y[Py (z, s)), -(20)

which again only requires finding the maximum of a function of one variable.

Figure 2 illustrates the method with continuous functions pux and , y. Loci of Eq. (18) or, alter-
natively, Eqs. (19), for two values of z are shown superimposed upon contours of

PXxy(X,Y) A minllpx(x), q y(y)I. (21)

5
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Fig. 2 - Illustration of the computer solution for AZ(z) when z

= f (x, y), given AX(x) and u y(y). Rectangles represent con-
/ tours of constant Axx y(x, y) = min (px(x), A y(y)]. One set

/ 0.8 84 _ _ _ / of nested rectangles is obtained for convex Ax and jA y; other-

/0s°.6 ; 2 X35 wise, more than one is obtained. Loci of f (x, y) are shown for

/ .4 _J \ two values of z. For each value of z, the corresponding locus is
traversed by varying parameter s, and IZ(z) is found as the

0 / o.jS / maximum oflsxxy on the locus.

0 xY-

/ X /

Since Px and p -yare continuous functions, it follows from Eq. (21) that the loci of constant PAXxy
(contours) are rectangles (or degenerate rectangles, including points, rectangular areas or line seg-
ments) with their sides parallel to the x and y axes. For each value of z, the corresponding locus is
traversed by varying s, and pAz(z) is found as the maximum of PXx y on the locus. A FORTRAN pro-
gram for this procedure with the example of Appendix A is presented in Appendix C.

Equation (18) can be further generalized to the case of a function of n fuzzy variables:

z f(x 1 , x2, ark , X.) (22)

A parametric representation of f now has the form

XI PI (z, SI, S2. ,

Xl = P (z, SI, S2, *--, (23)

where the SI, s2, ... , s-, are independent parameters. The expression for Pz is then

Mz(z) z sup min(pl[PI(z, s, S 2, .*, Sn-d.)1 p2[P2 (z, SI, S2- Sn-l.] **,

1k[Pn(Z, SI, S2, ........ ,Sn-dl)] (24)

where pu,(xi) is the membership function for the fuzzy variable Xi. As the number of parameters
increases, numerical efficiency becomes more important. In many situations the membership functions
will be continuous and convex, allowing the use of efficient maximization algorithms.

A major problem in the application of fuzzy-set theory is the specification of membership func-
tions. In the example of Appendix A, AE and MB are assumed given. A more general form of the pro-
gram in Appendix C has been written which prompts an "expert" user to specify "most possible,"

"minimum possible," and "maximum possible" values of the fuzzy variables. These values are used to
construct triangular membership functions. A further generalization would allow membership functions
to be specified for any of the independent variables. Such a program might be termed a fuzzy calcula-
tor.

6
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DISCUSSION

The analytical and computer methods presented have much wider application than the
burnthrough equation and EW analysis. They may be used for any fuzzy equation involving any rv
number of variables when suitable substitutions can be made and, for the analytic method, when the
given membership functions are analytic. The last condition does not restrict the computer method,
which is generally the most practical means of solution. The analytical method is most valuable for
theoretical considerations.

The expected advantages of the fuzzy-set approach to analysis involving nonstatistical uncertainty
are as follows:

* Membership functions (or agreement with suggested membership functions) for fuzzy
variables should be easier to obtain from experts who tend to be unwilling to commit
themselves to single numbers.

* The uncertainty is made explicit and carried through the analysis to appear as a fuzzy
result. This is less misleading than the use of uncertain, single numbers leading to a
sharp result.

* There is a built-in sensitivity analysis with simultaneous variation of uncertain quantities
and weighting of their possible values (by means of their membership functions).

The above advantages are cited against the use of expected values with a personal-probability
(degree-of-belief) approach. A more proper comparison would be against personal probability with dis-
tributions for, say, ER and BR as random variables that lead to a distribution for R as a random vari-
able. But such an approach is not currently used. The relative merits of it and the fuzzy-set method
need further study.
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Appendix A

EXAMPLE OF THE BURNTHROUGH EQUATION WITH TWO FUZZY
INDEPENDENT VARIABLES

We assume the known parameters in Eq. (1) are

a- = 105 in2,
BJ = 107 Hz,
Ej _=106 W,
(SNR)d - 10,

= Jr/180 rad,
0, = -r/S rad/s, and
f - 102 Hz.

We let the membership functions for ER and BR as fuzzy variables be given by Figs. Al and A2.
These functions can be written

M,(b)= -'--- (b-106), b E [106, 5.1061, (Ala)4.106 ( Aa

-T5 5.106 b E(15.106, 10 l, (Alb)

4 13- b6 b E [10', 1.5.101), (Alc)

and

ME(e) 9 Os - i , e E [108, 1091, (A2a)

1 0 - 4ej e E [109, l0o1. (A2b)

It is convenient to make the substitutions BR = BN0 6, ER ERlO8, and, correspondingly,
b = b*l0 6 with e - e*.l08. Then Eq. (2) becomes

R _ (I0K)2B;, (A3)

which we write as

R2 = (-0K T. (A4)

9
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b (Hz)

Fig. Al - Membership function for BR
as a fuzzy variable

e (WI

Fig. A2 - Membership function for ER
as a fuzzy variable

10
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Our first task is to find the membership function P T(t) for T with t A e*Ib* (where A means "defined
as"), using the new membership functions:

M.;(b*) = (b - 1), b* E (1, 51, (ASa)

= I 15 - b* | be E [5, 10, (A~b)

= 4 13- 5 |' be E [10,151, (ASO)

and

M.;(e*) = 9 (e* - 1), el E [1, 101, (A6a)

=i10. e1 Ab
_ 10 Ie [ | e 10,1001. (A6b)

According to the extension principle, the membership function for T is found from

AT(t) - sup min [g;(b*),g;(e*), (A7)

subject to t = e*Ib*, or simply

MT(t) = syV min 1p;(b*),vt(b*)L, (A8)

where v,(bl) A pu(tb*).

Figure A3 is a plot of IAp(b*) and plots of A.,(b*) for t = 0.5, 1, 2, and 3 and indicates how a
graphical solution might be obtained. In this simple case there are no local maxima, and solutions are
found from intersections of a;(b*) and v,(b*). It is also clear from the figure which branches of the
functions give a solution for different regions of the domain lb*).

Thus, analytically, we find

St- 1
T(t) 2 , t E [0.0667,0.7751, (A9a)

20 t +3

25t -1 t ( 10.775,21, (A9b)
20t + 9'

= 90+ 4't t E 12,1001, (A9c)

= 0, otherwise.

The desired membership function for the burnthrough range is then found, in view of (A4), from

PR(r) = AR(10Kf) = T(t). (AlO)
This is plotted in Fig. A4 as M2R(r').

11



GROSS, HANRAHAN, AND HOOD

Fig. A3 - Intersections of u(b*) with v,(b*)
for various values of t

r' (km)

Fig. A4 - Resulting membership function
for the burnthrough range
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Appendix B

THEOREM THAT THE RESULT IS INDEPENDENT
OF THE SUBSTITUTION USED

For a case of n fuzzy independent variables we use the extension principle in a more general
form* than Eq. (10). We let X be a Cartesian product of universes, X = XI x .*. x X", and let
A 1, ... , A, be n fuzzy sets in XI, ... , X, respectively. We let f be a mapping from Xto a universe Y
such that y = f(x), y Y, x A (xi, ... , xn), x E X, and xi E Xi, i = 1, 2, ... , n. The extension
principle allows us to induce from the n fuzzy sets Ai with membership functions ,uA,(xi) a fuzzy set B

on Ythrough f such that the membership function for B is

MB(Y) = sup min [AAI(XI), * A,- ./(XQ0)I
x

Y-f(x)

=0 iff'(y) = 4, (B1)

where f I (y) is the inverse image of y and 4 is the empty set.

Theorem: Let h be a mapping from X.-I x X, to a universe Z and g be a mapping from
x x XX_2 x Z to the universe Y such that for every y E Y the set of simultaneous solutions {x)

of z = h (xci 1, xt) and y = g(x1 , . .. , X-2, z) is equal to the solution set of y = f(x). Let C be a
fuzzy set induced on Z thorough h by the fuzzy sets An- I and A,. Then

sB(Y) = sup min uWA(XI), .... As 2(xn-2), MC(Z)I. (B2)XI,...,Xn-2,zI
Y-9(x 1 .-- Xn-2,z)

Proof: It suffices to prove the theorem for n = 3. The general case then follows by mathematical
induction. Thus we want to prove that, for all x = (xI, x2, x3) in the solution set of y = W

sup min[AA(Xd),pA 2(X2),PA 3 (X3)]
x

y-f(x)

sup min(PAI(x 1 ), sup minuLA 2 (X2),MAA3(X3)ll. (B3)

y-g(xI z) Z-h(x2,x3 )

We let

S,(y) = fx:f(x) -y, min[WpA(xd),pA2(x2),M.A3(x3)] = 1.A,(xd)l, (B4)
3

where i = 1, 2, 3. It is clear that U Si(y) is the solution set of y = f(x). It suffices then to show

that Eq. (B3) is valid for all S,(y).

*D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980, pp. 36-37.
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We first evaluate the right-hand side of Eq. (B3) for SI(y). From definition (B4) we have for all
x ES,(y)

PA1 (XI) ( minE.A 2 (X2),PA 3 (X3)I

< sup minWu X2 (x2), PA 3 (X3)] (B5)
X2,X3

Thus the right-hand side of Eq. (B5) becomes for x E SI(y)

sup minfPA1 (x1), sup min pA2 (X2),A 3 (X3) ) = SUP PA4(XI) (B6)
xI'z x2.x3 W4 U3XI

z-h (x2-x3)

But for x E 5S1 (y) the left-hand side Eq. (B5) can be written, in view of Eq. (B4), as

sup min uA 1(x'),pA 2 (x2), AA3 (x3)I = sup pAA(XI). (B7)
X ,XI

Thus Eq. (B5) is valid for x E SI (y).

For S2 (Y) we have from Eq. (B4)

IAA2(X2) = min[PA 2(X2),PA 3 (X3)], (B8)

so that in the right-hand side Eq. (B3) for x E S2 (y)

sup minpA 2 (x2),pA 3 (x3)] = sup PA2 (x2). (B9)
X2,X3 X2

Also, since MA2 (X2 ) < AAI (XI) for S2 (y), it follows that the right-hand side of Eq. (B3) becomes for

x E S2 (Y)

sup min 1AA(xl), sup -A2 (x2)] = sup AA2 (x2). (B10)
X1,Z X2 X2

z-h (x2,x3)

For 52 (Y) the left-hand side of Eq. (B3) becomes with (B4)

sup min u.AI(xI),A.4A 2(x2),pA 3 (x3)] SUP PA 2(X2). (B11)

Thus Eq. (B5) is valid for x E S2(y) as well.

Similarly we can show that Eq. (B5) is valid for x E S3 (y) and, therefore, for all x in the solution
set. The hypotheses of the theorem are sufficient; we can show that they are not necessary. Further,
the hypotheses are satisfied with

f (XI, ... 1, x , x2) = g[xI, ..- , xn-2,h(x 1,- xX) . (B12)
The problem of when f has the desired property is interesting and will be discussed in a subsequent
report.
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Appendix C
COMPUTER SOLUTION OF THE EXAMPLE IN APPENDIX A

The FORTRAN program listed in Table Cl calculates the membership function and average
(mean) value of the burnthrough range for the example in Appendix A. To show the generality of the
procedure, the parametric expressions for e and b and the functions ME and PB are implemented as
FUNCTION subprograms. The subroutine LIMITS restricts the search to regions of the (e, b) plane
where IAE and AB are nonzero. Thus the program is applicable to any case where the effective radiated
power and the bandwidth are the only uncertain radar parameters. Results are shown in Table C2 for
the membership functions and known parameter values of Appendix A.

Table C1 - Computer program for the burn-through range when the
radar's effective radiated power and bandwidth are uncertain

Table continues
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PROGRAM FUZZ
C *

C A PROGRAM FOR CALCULATING THE BURNTHROUGH RANGE FOR A HOSTILE *
C SEARCH RADAR AGAINST A SELF-SCREENING JAMMER. *
C *

C

C
C THE BURNTHROUGH RANGE, R, DEPENDS ON THE ERP,-E, AND BANDWIDTH!*
C B, OF THE RADAR THROUGH: R**2=A*E/B, WHERE A DEPENDS ON KNOWN *
C PROPERTIES OF THE JAMMER AND THE RADAR.. - *
C THIS PROGRAM CALCULATES THE MEMBERSHIP FUNCTION FOR THE FUZZY *
C VARIABLE R WHICH DEPENDS ON THE FUZZY VARIABLES E AND B. *
C FOR GIVEN R WE HAVE E=PE(R,S), B=PB(R,S), WHERE S *
C IS A PARAMETER WHICH GENERATES ALL E,B PAIRS WHICH *
C YIELD R. E AND B HAVE MEMBERSHIP FUNCTIONS FMUE(E) AND FMUB(B). *
C *

C
PARAMETER PI=3.14159 -
COMMON SMIN,SMAX,RMIN,RMAX,A
NR=100
NS=1000

C
TYPE *,'RADAR CROSS SECTION (SQ. M) ?'
ACCEPT *,SIG
TYPE *,'JAMMER BANDWIDTH (MHZ) ?'
ACCEPT *,BJ
TYPE *,'JAMMER ERP (WATT) 7'
ACCEPT *,EJ
TYPE *,'RADAR BEAMWIDTH (DEG) ?'
ACCEPT *,W
W=W*PI/180.
TYPE *,'SCAN RATE (HZ) ?'
ACCEPT *,SR
SR=2.*PI*SR
TYPE *,'MIN. SNR FOR DETECTION ?'
ACCEPT *,SNR
TYPE *,'PRF (PPS) ?'
ACCEPT *,PRF

C
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Table Cl (continued)

A=(SIG*BJ/(4.*PI*EJ*SNR))*(W*PRF/SR)**0.8
A=A*1E8

C
CALL LIMITS (0.,0)
SUM=0.
WSUM=0.
AVG=0.

C
DO 500 I=1,NR

R=RMIN+(RMAX-RMIN)*FLOAT(I-i)/FLOAT(NR-1)
CALL LIMITS (R,1)

SUP=0.
DO 400 J=1,NS

S=SMIN+(SMAX-SMIN)*FLOAT(J-1)/FLOAT(NS-1)
SUP=AMAX1(SUP,AMIN1(FMUE(PE(R,S)),FMUB(PB(R,S))))

400 CONTINUE
R=R/1000.
TYPE *I'R (KM) =',R,'MU(R) =',SUP

C
C CALCULATE EXPECTED VALUE
C

SUM=SUM+SUP*R
WSUM=WSUM+SUP

C
500 CONTINUE
C

IF (WSUM.GT.1E-6) AVG=SUM/WSUM
TYPE *,'AVERAGE BURNTHROUGH RANGE (KM) =',AVG

C
END

C
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C

SUBROUTINE LIMITS(R,I)
C

C *
C THIS SUBROUTINE DETERMINES SEARCH LIMITS ON R AND S. *
C IT REQUIRES UPPER AND LOWER LIMITS ON E AND B *
C OUTSIDE OF WHICH FMUE(E) AND FMUB(B) ARE ZERO, *
C AND EXPRESSIONS FOR R AND S IN TERMS OF E AND B. *
C *

C
COMMON SMIN,SMAX,RMIN,RMAX,A

C
DATA EMIN/1./,EMAX/100./,BMIN/1./,BMAX/15./

C
IF (I.GT.0) GOTO 100

RMIN=SQRT(A*EMIN/BMAX)
RMAX=SQRT(A*EMAX/BMIN)

RETURN
C
100 CONTINUE

SMIN=AMIN1(EMIN,BMIN*R**2/A)
SMAX=AMAX1(EMAX,BMAX*R**2/A)

RETURN
C

END
C

Table continues
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C:

Table C1 (continued) '

FUNCTION PE(R,S)
C

C THIS FUNCTION, TOGETHER WITH PB(R,S), DEFINES THE DEPENDENCE *
C OF R ON VARIABLES E AND B. THE RELATION IS R**2=A*E/B. *
C *

C
COMMON SMIN,SMAX,RMIN,RMAX,A

C
PE=S
RETURN
END

C
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C

FUNCTION PB(R,S)
-C

C THIS FUNCTION, TOGETHER WITH PE(R,S), DEFINES THE DEPENDENCE *
C OF R ON VARIABLES E AND B. THE RELATION IS R**2=A*E/B. *

C *

C
COMMON SMIN,SMAX,RMIN,RMAX,A

C
PB =A*S
IF (R.GT.1E-3) PB=PB/R**2
RETURN
END

C
c$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C

FUNCTION FMUE(E)
C

C *
C THIS REPRESENTS THE MEMBERSHIP FUNCTION.FOR FUZZY VARIABLE E. *
C *

C
C SIMPLE EXAMPLE

,FMUE=0.
IF (E.GE.1..AND.E.LE.10.) FMUE= (E-1.)/9.
IF (E.GT.10..AND.E.LE.100.) FMUE=(10.-E/10.)/9.
RETURN
END

C

C
FUNCTION FMUB(B)

C

C *
C THIS REPRESENTS THE MEMBERSHIP FUNCTION FOR FUZZY VARIABLE B. *
C *

C
C SIMPLE EXAMPLE

FMUB=0.
IF (B.GE.1..AND.B.LE.5.) FMUB=(B-1.)/4.
IF (B.GT.5..AND.B.LE.10.) FMUB=(5.-B/5.)/4.
IF (B.GT.10..AND.B.LE.15.) FMUB=(3.-B/5.)*3./4.
RETURN
END

C

17
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Table C2 - Computer output for the program in Table Cl with
the membership functions and known parameter values of
Appendix A

S RUN FUZZ
RADAR CROSS SECTION (SQ. M) ?
1 .OES
JAMMER BANDWIDTH (MHZ) ?
10.0
JAMMER ERP (WATT) ?
1 .0E6
RADAR BEAM WIDTH (DEG) ?
1.0
SCAN RATE (HZ) ?
0.1
MIN. SNR FOR DETECTION ?
10.0
PRF (PPS)
100.0
R.(KM) =

R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) a
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R (KM) =
R ((M) =
R (KM) =

0.3466001
0.4786926
0.6107852
0.7428777
0.8749703

1.007063
1.139155
1.271248
1.403341
1.535433
1.667526
1.799618
1.931711
2.063803
2.195896
2.327989
2.460081
2.592174
2.724266
2.856359
2.988451
3.120544
3.252636
3.384729
3.516821
3. 648914
3.781007
3.913099
4.045192
4.177284
4.309377
4.441469
4.573562
4.705654
4.837747
4.969840
5.101932
5.234025
5.366117
5.498210

MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) -
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MUCR) =
MU(R) =
MU(R) =

0.0000000E+00
9.1855764E-02
0.2004713
0.3220916
0.4459961
0.5818230
0.7087278
0.7931786
0.8506137
0.9012267
0.9414500
0.9768122
0*9953954
0.9810811
0.9656657
0.9502503
0*9337337
0.9172173
0,8995996
0.8830831
0.8651874
0.8467467
0.8291292
0.8104104
0.7926978
0.7738354
0.7561366
0.7371097
0.7195187
0.7004953
0.6831930
0.6645205
0.6475086
0.6290241
0.6128144
0.5948097
0.5781121
0.5621302
0.5451371
0.5285189

Table continues
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Table C2 (continued)

R (KM) = 5.630302
R (KM) = 5.762395
R (KM) = 5.894488
R (KM) = 6.026580
R (KM) = 6.158673
R (KM) = 6.290765
R (KM) = 6.422858
R (KM) = 6.554951
R (KM) = 6.687043
R (KM) = 6.819135
R (KM) = 6.951228
R (KM) = 7.083320
R (KM) = 7.215413
R (KM) - 7.347506
R (KM) = 7.479598
R (KM) = 7.611691
R (KM) = 7.743783
R (KM) = 7.875876
R (KM) = 8.007968
R (KM) = 8.140061
R (KM) = 8.272153
R (KM) = 8.404246
R (KM) = 8.536339
R (KM) = 8.668430
R (KM) = 8.800524
R (KM) = 8.932616
R (KM) = 9.064708
R (KM) = 9.196801
R (KM) = 9.328894
R (KM) = 9.460986
R (KM) = 9.593080
R (KM) = 9.725171
R (KM) = 9.857264
R (KM) = 9.989355
R (KM) = 10.12145
R (KM) = 10.25354
R (KM) = 10.38563
R (KM) = 10.51773
R (1KM) = 10.64982
R (1KM) = 10.78191
R (KM) = 10.91400
R (KM) = 11.04610
R (KM) = 11.17819
R (KM) = 11.31028
R (KM) = 11.44238
R (KM) = 11.57447
R (KM) = 11.70656
R (KM) - 11.83865
R (KM) - 11.97075
R (KM) = 12.10284
R (KM) - 12.23493
R (KM) = 12.36702
R (KM) = 12.49911
R (KM) = 12.63121
R (KM) = 12.76330
R (KM) = 12.89539
R (KM) = 13.02748
R (KM) = 13.15958
R (KM) = 13.29167
R (KM) = 13.42376
AVERAGE BURNTHROUGH
S

MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =

MU(R) =

MU(R) =

MU(R) =
MU(R) =
MU(R) =

MU(R) =

MU(R) =
MU(R) =

MU(R) =
MU(R) =

MU(R) =
MU(R) =
MU(RP) =

MU(R) =

MU(R) =

MU(R) =
MU(R) =

MU(R) =

MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =

MU(R) =
MU(R) =
MU(R) =
MU(R) -
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =

MU(R) =
MU(R) =

MU(R) =

MU(R)
MU(R) =

MU(R) =
MU(RP) =

MU(RP) =

MU(R) =
MU(R) =
MU(R) =
MU(R) =
MU(R) =

RANGE (KM) =

0.5123141
0.4966409
0.4813002
0.4665687
0.4524058
0.4387506
0,4233998
0.4097492
0.3964981
0.3828891
0.3696639
0.3581413
0.3449887
0.3319885
0.3199065
0.3084331
0.2969701
0.2860853
0.2762794
0.2663836
0.2549562
0*2448068
0. 2358705
0.2248322
0.2168122
0. 2074694
0.1977779
0.1901431
0.1825137
0.1730798
0.1639993
0.1559047
0.1482931
0.1406857
0.1337029
0.1277320
0.1216348
0.1140414
0.1064510
0.1000918
9.5029056E-02
8.7447226E-02
8.2949318E-02
7.6041251E-02
7.0592560E-02
6.4644873E-02
6.0495801E-02
5.3257197E-02
4.9441695E-02
4.3067295E-02
3.8065791E-02
3.4255862E-02
3.0447721E-02
2.2890359E-02
1.9085437E-02
1.5282005E-02
1. 1480063E-02
7.6795518E-03
3.8804412E-03
0.OOOOOOOE+00

4.430007
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